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Abstract. The minimization of molecular potential energy functions is one of the most challenging,
unsolved nonconvex global optimization problems and plays an important role in the determination
of stable states of certain classes of molecular clusters and proteins. In this paper, some equivalent
formulations and necessary optimality conditions for the minimization of the Lennard–Jones poten-
tial energy function are presented. A new strategy, the code partition algorithm, which is based on a
bilevel optimization formulation, is proposed for searching for an extremal Lennard–Jones code. The
convergence of the code partition algorithm is proved and some computational results are reported.
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1. Introduction

Global optimization problems, that is, finding the global minimum (or maximum)
of a function with arbitrary number of independent variables that may be continu-
ous or discrete, appear in almost all fields of science, technology and industry,
ranging from hydrodynamics and protein folding to the design of VLSI circuits
and optimal transportation routes. One of the most significant and challenging
global optimization problems in molecular biophysics and biochemistry is that of
computing the native three-dimensional conformation (folded state) of a protein
given its amino acid sequence, possibly in the presence of additional agents (e.g.,
drugs). Systematic conformational search based on global optimization algorithms
and heuristics is a powerful tool in modeling of biomolecules. The minimization of
molecular potential energy functions plays an important role in the determination
of ground states or stable states of certain classes of molecular clusters and proteins
[1, 5, 24, 27, 34–37].

In almost all cases, the molecular potential energy function is nonconvex and
therefore has many local minima. So far, significant progress in identifying ap-
propriate energy functions has been made; the primary impediment is the lack
of efficient global minimization methods for these large-dimensionality problems.
How to find efficiently global minima of such nonconvex potential energy functions
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is one of the most challenging, unsolved global optimization problems [13, 14, 16,
40].

The most important optimization methods for modeling biomolecular structures
are discussed in the paper [32] and the special issues [34, 35]. A comprehensive
survey of recent developments in global optimization can be found in the references
[2, 7, 19, 20, 28, 30, 31].

Among the most commonly used potential energy functions, the simplest one
is that of two-body central ‘forces’ between the component atoms [14, 18, 25].
Given a cluster of N atoms in the three–dimensional space, let the code PN =
{x1, · · · , xN } be the collection of centers of N atoms. The potential energy func-
tion of the cluster is defined as the summation of the two-body interatomic pair
potentials over all of the pairs, i.e.,

V (PN) =
∑

1�i<j�N

v(rij ), (1)

where rij = ‖xi − xj‖ is the Euclidean distance of the points xi and xj , and v(rij )

denotes the potential energy between atoms i and j with centers at xi and xj ,
respectively.

Many types of the function v(r) may be used in physical models, but some
necessary restrictions should be imposed on them in order to let the behavior of
v(r) reflect the configurations of molecular clusters. Usually, we are only interested
in cases where v(r) is a well potential satisfying the following conditions [32]:

1. v(r)→ 0− as r →+∞;
2. v(r)→+∞ as r → r+min and rmin � 0;
3. v′(r0) = 0 for a unique r0 with rmin < r0 < +∞;
4. v′′(r0) > 0 and v(r0) < 0.

During the last decade many attempts have been made to globally minimize
potential energy functions [4, 6, 29, 33, 37, 40]. In particular, the Lennard-Jones
potential energy function

V (PN) =
∑

1�i<j�N

v(‖xi − xj‖)

=
∑

1�i<j�N

(‖xi − xj‖−12 − 2‖xi − xj‖−6), (2)

where the code PN = {x1, · · · , xN } and v(r) = r−12 − 2r−6, has been studied by
many optimization researchers [6, 15, 22, 26, 41, 42]. An equivalent form of the
Lennard–Jones potential function (i.e., v(r) = (σ r−1)12− (σ r−1)6 ) is also used in
some research papers [3, 8, 9, 10, 23, 39]. This is a simple case of the more general
potential energy function with v(r) = (m− n)−1(nr−m −mr−n) and m > n.
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The general formulation of the Lennard–Jones problem in this paper is defined
as follows:

(LJ −G)EN
�= min

∑

1�i<j�N

(r−12
ij − 2r−6

ij ), (3)

where rij = ‖xi − xj‖ and each point xi ∈ �3. A globally optimal solution
P ∗N = {x∗1 , · · · , x∗N } of the Lennard–Jones problem (i.e., V (P ∗N) = EN ) is called
an extremal Lennard–Jones code. Since we cannot prove the optimality of the best
code that has been found except for a very small N , we should refer to the code
with the lowest known energy as a putative extremal Lennard–Jones code, but for
convenience in the following this adjective usually is dropped.

The Lennard–Jones problem is a very simple, yet reasonably accurate math-
ematical model of low temperature microclusters of heavy rare gas atoms such
as argon, krypton or xenon. Since the objective function in (3) is non-convex
and the number of distinct local minima in the potential energy surface of an
N-atom Lennard–Jones cluster is about O(eN

2
) [16], the Lennard–Jones problem

is considered to be a very difficult and challenging global optimization problem.
Although many algorithms have been proposed during the past thirty years [6, 8–
10, 12, 16, 17, 22, 23, 26, 41, 42] and good putative global optima are known for
the Lennard–Jones problem, new better codes are still being found within the range
of 2 � N � 147. In fact, the Lennard–Jones problem has become a benchmark for
any new global optimization algorithm.

The methods proposed to deal with the Lennard–Jones problem can be classified
into two groups:

(i) Lattice methods [3, 15, 17, 26, 38, 41, 42]. The main idea of this class
of methods is to use various lattices or structures as the basis of searching for
an extremal Lennard–Jones code, such as polytetrahedral structures, the IC (the
complete Mackay icosahedron) and FC (tetrahedrally bonded face sites which lie
at stacking fault locations relative to IC lattice, together with the vertex sites)
multilayer icosahedral lattices, face-centered cubic (FCC) lattice and so on. After
a better structure of points is found, the algorithm relaxes the resulting configur-
ation by using a nonlinear optimization method, such as the conjugate gradient
algorithm, or the quasi-Newton method.

(ii) General purpose methods [4, 6, 11, 22]. This class of methods does not
make any prior assumptions regarding the molecular configuration. It may integrate
various global optimization ideas and approaches, including simulated annealing,
genetic algorithm, smoothing and spatial averaging of the objective function and
packet annealing [32].

Many valuable ideas are exploited and incorporated into these two kinds of
methods, such as growth sequences and related forward greedy growth operator F
(i.e., an extremal code with respect to N + 1 may be obtained from that of N by
searching over a more extensive set of coordinates after adding a single atom and
relaxing over all variables to a local minimum), reverse greedy growth operator



100 H.-X. HUANG ET AL.

R (i.e., an extremal code with respect to N − 1 may be obtained by removing
the least tightly bound atom in the optimal conformation with respect to N and
relaxing over all variables to a local minimum) [22]. Some other strategies, such
as transforming the original objective function into another form having the same
global minima, or using a new form instead of the original objective function at
the beginning of algorithms, have been proved very successful in searching for an
extremal Lennard–Jones code [8, 26].

In this paper, some properties, which are related to any extremal Lennard–Jones
code, are studied and a new strategy to attack the Lennard–Jones problem is sug-
gested. The paper is organized as follows: In Section 2, a property and some related
equivalent formulations for the Lennard–Jones problem are explored. In Section 3,
another equivalent formulation for Lennard–Jones problem based on the bilevel
optimization model and a concept about the L–points pattern Lennard–Jones code
are introduced. Necessary optimality conditions for the Lennard–Jones problem
is also established. In Section 4, a new strategy, the code partition algorithm, to
search for an extremal Lennard–Jones code is suggested and some computational
results are reported.

2. Equivalent formulations for the Lennard–Jones problem

2.1. EQUIVALENT CONSTRAINED GLOBAL OPTIMIZATION

Let us consider the constrained global optimization problem:

(LJ − S) max
∑

1�i<j�N

r−6
ij or

∑

1�i<j�N

r−12
ij , (4)

s.t.
∑

1�i<j�N

r−12
ij =

∑

1�i<j�N

r−6
ij , (5)

where rij = ‖xi − xj‖.
It is clear that every feasible solution of the constrained global optimization

problem (4)∼(5) corresponds to an upper bound of the unconstrained global optim-
ization (3), i.e., the Lennard–Jones problem. We claim that the constrained global
optimization problem (4)∼(5) is equivalent to the Lennard–Jones problem (3). In
order to establish the equivalence of the two above formulations for the Lennard–
Jones problem, it is sufficient to prove that every globally optimal solution P ∗N
of (3) is a feasible solution of the problem (4)∼(5). In this case, P ∗N must be a
globally optimal solution of the problem (4)∼(5). Therefore, the constrained global
optimization problem (4)∼(5) is referred to as the special formulation of the the
Lennard–Jones problem.

Given a real ε in a small neighborhood of zero and a code PN = {x1, · · · , xN } in
which points are mutually different, define the code PN,ε = {(1+ ε)x1, · · · , (1 +
ε)xN }.
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In the following, we denote by

ωs(PN) =
∑

i<j

‖xi − xj‖−s ,

for any real s > 0. From the Lennard–Jones potential function (2), we get

V (PN,ε) = (1+ ε)−12ω12(PN)− 2(1+ ε)−6ω6(PN). (6)

Figure 1. The functions (1+ x)−12 and (1+ x)−6.

Figure 1 plots the functions (1+x)−12 and (1+x)−6 for x ∈ [−0.1, 0.1]. Since
x = ε is very close to zero, the following Taylor’s expansions hold:

(1+ ε)−12 = 1− 12ε + 78ε2 + o(ε2)

(1+ ε)−6 = 1− 6ε + 21ε2 + o(ε2).

We substitute the above expressions into (6) and obtain

V (PN,ε) =V (PN)− 12(ω12(PN)− ω6(PN))ε

+ (78ω12(PN)− 42ω6(PN))ε
2 + o(ε2).

If the code PN is a globally optimal solution of (3), V (PN) must be a locally
minimal value of V (PN,ε) with respect to variable ε. Furthermore, the derivative
of V (PN,ε) at ε = 0 must be zero, i.e., ω12(PN) ≡ ω6(PN). Therefore, we get the
following theorem.
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THEOREM 2.1. For the general formulation of the Lennard–Jones problem, if the
code PN = {x1, · · · , xN } is a globally optimal solution of (3), then it is a feasible
solution of the special formulation (4)∼(5), i.e., it satisfies

ω12(PN) ≡ ω6(PN). (7)

It is also a globally optimal solution of (4)∼(5). Furthermore, the general for-
mulation of the Lennard–Jones problem is equivalent to the special formulation
(4)∼(5).

Proof. From above analysis, it is clear that PN is a feasible solution of the special
formulation (4)∼(5). If it is not a globally optimal solution of (4)∼(5), then there
exists a code P ∗N such that

ω6(P
∗
N) > ω6(PN),

ω12(P
∗
N) = ω6(P

∗
N).

Therefore, we get a better code P ∗N than PN for the problem (3) such that

V (P ∗N) = −ω6(P
∗
N) < −ω6(PN) = V (PN).

Hence, PN is not a globally optimal solution of the problem (3). This contradic-
tion indicates that a global optimal solution of the problem (3) must be a globally
optimal solution of (4)∼(5) and vice versa. �
REMARK 1. The special formulation (4)∼(5) of the Lennard–Jones problem can
be expressed equivalently as

(LJ − SL)maxω6(PN) or ω12(PN), (8)

s.t.ω12(PN) � ω6(PN), (9)

where PN = {x1, · · · , xN }.
REMARK 2. Consider the following problem:

(LJ − SG)minω6(PN) or ω12(PN), (10)

s.t. ω12(PN) � ω6(PN), (11)

where PN = {x1, · · · , xN }. Any optimal solution of (10)∼(11) is a feasible solution
of the special formulation (4)∼(5) of the Lennard–Jones problem.

2.2. EQUIVALENT UNCONSTRAINED GLOBAL OPTIMIZATION

Let us consider the following unconstrained global optimization problem:

(LJ −GE)min ln(ω12(PN))− 2 ln(ω6(PN)), (12)

where PN = {x1, · · · , xN }. We claim that above unconstrained optimization prob-
lem (12) is equivalent to the general formulation (3) of the Lennard–Jones problem.
For this equivalence, we have the following theorem:
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THEOREM 2.2. The following two conclusions hold:
(1) If P ∗N is an optimal solution of the problem (3), then P ∗N is also an optimal

solution of the problem (12).
(2) If P ∗N is an optimal solution of the problem (12),

then k ·P ∗N �= {k · x∗1 , · · · , k · x∗N } is an optimal solution of the problem (3),
where k = (ω12(P

∗
N)/ω6(P

∗
N))

1/6. The global minimum of the problem (3)
is −(ω6(P

∗
N))

2/ω12(P
∗
N).

Proof. The first conclusion is a corollary of Theorem 2.1 based on the monotonic
property of the logarithm function.

If P ∗N is an optimal solution of the problem (12), and let us denote

k := (ω12(P
∗
N)/ω6(P

∗
N))

1/6,

then it is easy to check that k · P ∗N is a feasible solution of the special formulation
(4)∼(5). The objective function value of the problem (12) with respect to k · P ∗N is
the same as its globally minimal value and is also equal to − ln(ω6(k · P ∗N)). By
the monotonic property of the logarithm function, ω6(k · P ∗N) must be the globally
maximal value of the problem (4)∼(5), i.e., k ·P ∗N is a globally optimal solution of
the problem (4)∼(5). Using Theorem 2.1 again, we know that k · P ∗N is a globally
optimal solution of the problem (3). Hence, the second conclusion also holds. �
REMARK 3. For the unconstrained formulation (12) of the Lennard–Jones prob-
lem, the objective function value with respect to a code PN remains unaltered
or invariant under similarity transformations (i.e., translation, rotation, reflection,
dilation or dilatation of the entire configuration).

3. Necessary optimality conditions for the Lennard–Jones problem

In this section, we first present a bilevel optimization formulation for the Lennard–
Jones problem. The main idea of the bilevel optimization formulation is to partition
the whole code into a reference code and an active code, and then, to solve two
optimization problems with respect to the active code and the reference code,
respectively. In fact, partition patterns can be changed during iteration from a
practical point of view. Theorem 3.1 states the relationship between a solution
of the Lennard–Jones problem and that of its bilevel optimization formulation.
By a particular partition, which leads to a one-point pattern Lennard–Jones code,
Theorem 3.2 gives a necessary optimality condition for an extremal Lennard–Jones
code.

Secondly, based on an idea similar to that used in Section 2, we obtain a general
necessary optimality condition for an extremal Lennard–Jones code (i.e., Theorem
3.3), which can be referred to as extensions of Theorem 2.1 and Theorem 3.2.

Let PN = {x1, · · · , xN } be a code in which points are mutually different. For
any subset U ⊆ I = {1, · · · , N}, any index k ∈ I and any real s > 0, denote



104 H.-X. HUANG ET AL.

PN(U) = {xk | k ∈ U } and

ωs(PN(U)) =
∑

i,j∈U,i<j

‖xi − xj‖−s ,

ωk
s (PN) =

∑

i∈Ik
‖xi − xk‖−s .

where Ik = I\{k}. We note that ωs({x}) = 0 for any x ∈ �3. If we partition the
index set I into two disjoint subsets I+ and I− (i.e., I+ ∩ I− = ∅ and I+ ∪ I− =
I ), then the Lennard–Jones potential energy function (2) can be decomposed as
follows:

V (PN) = ω12(PN)− 2ω6(PN)

= 1

2

∑

k∈I
V k(PN)

= V (PN(I
+))+ V (PN(I

+), PN(I
−))+ V (PN(I

−)),

where

V k(PN) = ωk
12(PN)− 2ωk

6(PN),

V (PN(I
±)) = ω12(PN(I

±))− 2ω6(PN(I
±)),

V (PN(I
+), PN(I

−)) =
∑

i∈I+, j∈I−
V ({xi, xj }).

Let us consider the bilevel optimization problem:

min {V (PN(I
−))+ V̄ (PN(I

−))}, (13)

s.t. xi ∈ �3, ∀i ∈ I−, (14)

where V̄ (PN(I
−)) is the globally optimal value of the sub-problem:

min {V (PN(I
+))+ V (PN(I

+), PN(I
−))}, (15)

s.t. xj ∈ �3, ∀j ∈ I+. (16)

The index subsets I− and I+ are called the reference index set and the active index
set, respectively. PN(I

−) and PN(I
+) are referred as to the reference code and the

active code, respectively. It is easy to obtain the following theorem, whose proof is
omitted.

THEOREM 3.1. A code PN is a globally optimal solution of the problem (3), if
and only if, given any I− ⊂ I = {1, · · · , N} as a reference index set, the active
code PN(I

+) is a globally optimal solution of the problem (15)∼(16), where I+ =
I\I− is the corresponding active index set.
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DEFINITION 3.1. Given an integer L ∈ [1, N], a code PN = {x1, · · · , xN }
is called an L–points pattern Lennard–Jones code if, for any subset U ⊂ I =
{1, · · · , N} with L elements, PN(U) is a globally optimal solution of the problem
(15)∼(16) corresponding to Uc = I\U as its reference index set. In particular, a
code PN is called a one–point pattern Lennard–Jones code if, ∀i ∈ I , xi ∈ PN is
a globally optimal solution of the problem (15)∼(16) corresponding to Ii = I\{i}
as its reference index set.

For k = 1, · · · , N , if we sequentially choose a reference index set I− = Ik, then
we obtain N similar three-dimensional global optimization problem (15)∼(16)
where V ({xk}) = 0 and V ({xk}, PN(Ik)) = V k(PN). Based on this idea and the
above notations, the following necessary optimality conditions for the Lennard–
Jones problem can be proved.

THEOREM 3.2. For the general formulation (3) of the Lennard–Jones problem,
if a code PN = {x1, · · · , xN } is an extremal Lennard–Jones code, then for any
k ∈ I , xk is a globally optimal solution of the corresponding optimization problem
(15)∼(16), where I+ = k, I− = Ik, i.e., PN is a one–point pattern Lennard–Jones
code. Furthermore, ∀k ∈ I , xk is a solution of the following nonlinear equation:

∑

i∈Ik
xi(r

−14
ik − r−8

ik ) = xk(ω
k
14(PN)− ωk

8(PN)), (17)

where rik = ‖xi − xk‖, i ∈ Ik.
Proof. Suppose that PN = {x1, · · · , xN } is a globally optimal solution of the

problem (3). For any k ∈ I , if xk is not a globally optimal solution of the corres-
ponding problem (15)∼(16), then there exists x∗k ∈ �3 such that

V ({x∗k }, PN(Ik)) =
∑

i∈Ik
‖xi − x∗k ‖−12 − 2

∑

i∈Ik
‖xi − x∗k ‖−6

< V ({xk}, PN(Ik)) =
∑

i∈Ik
‖xi − xk‖−12 − 2

∑

i∈Ik
‖xi − xk‖−6

Since Lennard–Jones potential energy function values, corresponding to codes
{x∗k } ∪ PN(Ik) and PN , are

V ({x∗k } ∪ PN(Ik)) = V ({x∗k }, PN(Ik))+ V (PN(Ik))

V (PN) = V ({xk}, PN(Ik))+ V (PN(Ik)),

respectively, we conclude that V ({x∗k }∪PN(Ik)) < V (PN), i.e., PN is not a globally
optimal solution of the Lennard–Jones problem (3). This contradiction indicates
that xk is a globally optimal solution of the problem (15)∼(16), where I− = Ik.
Because the objective function (15) is differential, we get the following necessary
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optimality condition that xk must satisfies:

∇kV ({xk}, PN(Ik)) = ∇kω
k
12(PN)− 2∇kω

k
6(PN)

= 12
∑

i∈Ik
(xi − xk)r

−14
ik − 2 ∗ 6

∑

i∈Ik
(xi − xk)r

−8
ik

= 0,

where ∇k is gradient operator with respect to xk and rik = ‖xi − xk‖. Hence, xk
satisfies equation (17). �

COROLLARY 3.1. For the general formulation (3) of the Lennard–Jones prob-
lem, suppose that PN = {x1, · · · , xN } is an extremal Lennard–Jones code. For any

k ∈ I , denote xk = rk
o
xk, where rk = ‖xk‖ and

o
xk= (cos(θk), sin(θk) cos(φk), sin(θk) sin(φk))

T .

Then, ∀k ∈ I , xk is a globally optimal solution of the problem (15)∼(16), where
I+ = k, I− = Ik, and (θk, φk, rk) is a solution of the following equations:

∑

i∈Ik
(r−14

ik − r−8
ik )xT

i ∇θk

o
xk = 0,

∑

i∈Ik
(r−14

ik − r−8
ik )xT

i ∇φk

o
xk = 0,

∑

i∈Ik
(r−14

ik − r−8
ik )xT

i

o
xk = rk(ω

k
14(PN)− ωk

8(PN)),

where rik = ‖xi − xk‖, i ∈ Ik.

It is easily checked that, ∀k ∈ I , xT
k ∇θk

o
xk = 0, xT

k ∇φk

o
xk = 0 and xT

k

o
xk= rk .

Using Theorem 3.2, we know that Corollary 3.1 holds.

Next, we give a general necessary optimality condition as an extension of The-
orem 2.1. Let PN be a code in which points are mutually different, I− be a reference
index set and I+ be the corresponding active index set. Denote the corresponding
reference code and active code by P−N and P+N , respectively. For any real ε in a
small neighborhood of zero, let P+N,ε = {(1 + ε)xi | i ∈ I+)}. It is easy to check
that

V (P+N,ε) = V (P+N )− 12(ω12(P
+
N )− ω6(P

+
N ))ε

+ (78ω12(P
+
N )− 42ω6(P

+
N ))ε2 + o(ε2).
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Then ∀i ∈ I+ and ∀j ∈ I−, the Taylor’s expansion

‖(1+ ε)xi − xj‖−s =r−sij (1+ 2εxT
i (xi − xj )+ ε2‖xi‖2

r2
ij

)−s/2

=r−sij − s
xT
i (xi − xj )

rs+2
ij

ε

+ (− s

2

‖xi‖2

rs+2
ij

+ s(s + 2)

2

(xT
i (xi − xj ))

2

rs+4
ij

)ε2 + o(ε2)

holds for any real s > 0, where rij = ‖xi − xj‖. After we take the summation of
the above expansion for every i ∈ I+ and j ∈ I−, we have

V (P+N,ε , P
−
N ) =

∑

i∈I+,j∈I−
(‖(1+ ε)xi − xj‖−12 − 2‖(1+ ε)xi − xj‖−6)

=V (P+N , P−N )− 12ε
∑

i∈I+,j∈I−
(r−14

ij − r−8
ij )xT

i (xi − xj )

− 6ε2
∑

i∈I+,j∈I−
(r−14

ij − r−8
ij )‖xi‖2

+ ε2
∑

i∈I+,j∈I−
(84r−16

ij − 48r−10
ij )(xT

i (xi − xj ))
2 + o(ε2).

Therefore, we obtain the following necessary optimality condition of the Lennard–
Jones problem:

THEOREM 3.3. For the general formulation (3) of the Lennard–Jones problem, if
PN = {xk|k ∈ I } is an extremal Lennard–Jones code, then for any reference index
set I− ⊆ I and its corresponding active index set I+ = I\I−, the active code
P+N = PN(I

+) is a solution of the following nonlinear equation:

ω12(P
+
N )− ω6(P

+
N )+

∑

i∈I+,j∈I−
(r−14

ij − r−8
ij )xT

i (xi − xj ) = 0, (18)

where rij = ‖xi − xj‖.
Proof. By Theorem 3.1, if PN is a globally optimal solution of the Lennard–

Jones problem (3), then, for any reference index set I− ⊆ I and a real ε, the
active code P+N must be a globally minimal solution of the function V (P+N,ε) +
V (P+N,ε, P

−
N ), where the notations have the same meaning as above. Using the first

necessary optimality condition with respect to variable ε, the conclusion follows. �
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REMARK 4. Theorem 3.3 is an extension of Theorem 2.1. In fact, Theorem 3.3
implies the following conclusion:

ω12(P
−
N )− ω6(P

−
N )+

∑

i∈I+,j∈I−
(r−14

ji − r−8
ji )x

T
j (xj − xi) = 0. (19)

Notice that rij = rji and r2
ij = (xi − xj )

T (xi − xj ). After summing (18) and (19),
we know the formula (7) holds when PN is an extremal Lennard–Jones code. In
fact, Theorem 3.3 also implies the formula (17) in Theorem 3.2, which is a special
conclusion of the following Corollary 3.2.

COROLLARY 3.2. For the general formulation (3) of the Lennard–Jones prob-
lem, if PN = {xk|k ∈ I } is an extremal Lennard–Jones code, then for any reference
index set I− ⊆ I and its corresponding active index set I+ = I\I−, the following
equation holds:

∑

i∈I+,j∈I−
(r−14

ij − r−8
ij )(xi − xj ) = 0, (20)

where rij = ‖xi−xj‖. In particular, since PN is a one-point pattern Lennard-Jones
code, the conclusion (20) holds for the cases of |I−| = 1 or N − 1.

Proof. Because the (absolute) distance between two points in the three-dimen-
sional space is invariant under any isometric transformation (i.e., translation, rota-
tion, reflection), the transformed code from PN must be an extremal Lennard–Jones
code under any isometric transformation of the entire configuration. In particular,
∀a ∈ �3, the code P ∗N = PN+a = {xk+a | xk ∈ PN } is also an extremal Lennard–
Jones code. By Theorem 3.3, we know that P ∗N satisfies equation (18). On the other
hand, PN also satisfies the same Eq. (18). Therefore, We have

∑

i∈I+,j∈I−
(r−14

ij − r−8
ij )aT (xi − xj ) = 0.

Since a is chosen arbitrarily, the nonlinear equation (20) holds for the extremal
Lennard–Jones code PN . �

4. The code partition algorithm and computational results

By Theorem 3.1 and Definition 3.1, we know any extremal Lennard–Jones code
must be L–points pattern Lennard–Jones code, where L is any integer between 1
and N . In this section, a code partition algorithm (CPA) based on Theorem 3.1
is presented to search for a certain X–points pattern Lennard–Jones code as the
approximation to an extremal Lennard–Jones code, where X is an unknown natural
integer. CPA is described first and a proof of its convergence follows. Some details
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and characteristics about CPA’s implementation and some computational results
are given in this section.

4.1. THE CODE PARTITION ALGORITHM (CPA)

Step 1. Set the error tolerance ε > 0. Input the parameter N and an initial mo-
lecular configuration code P

(0)
N . Set k = 0 and the strategy index SIk =

1.
Step 2. At the beginning of kth iteration, perform a translation on the entire con-

figuration such that the center of mass lies in the origin of a new coordin-
ate system. We still denote the new configuration code as P (k)

N . Choose an
arbitrary partition {�(k)

i | i ∈ Mk} of the index set I = {1, · · · , N}, where
Mk = {1, · · · , tk} and 2 � tk � N . For each i ∈ Mk, denote the subcode
P

(k)
N (�(k)

i ) by Q
(k)
i .

Step 3. The exploratory code P̂
(k)
N =

⋃
i∈Mk

Q̂
(k)
i , where Q̂

(k)
i = {x̂(k)

j | j ∈ �(k)
i },

is set by one of the following strategies. If SIk = 1, then go to step 4;
otherwise, go to step 5.

Step 4. Strategy 1:
For each i ∈ Mk , set the exploratory subcode Q̂

(k)
i to be a globally optimal

solution of the problem (15)∼(16), where the active index set I+ = �(k)
i ,

its corresponding reference index set I− = I\I+ and PN = P
(k)
N . Go to

step 6.
Step 5. Strategy 2:

For i ∈ Mk, let M−k,i = {j |j < i, j ∈ Mk}, M+k,i = {j |j � i, j ∈ Mk} and

set the exploratory subcode Q̂
(k)
i to be a globally optimal solution of the

problem (15)∼(16), where the active index set I+ = �(k)
i , its correspond-

ing reference index set I− = I\I+ and PN =⋃
j∈M−k,i Q̂

(k)
j ∪

⋃
j∈M+k,i Q

(k)
j .

Go to step 6.
Step 6. If V (P̂

(k)
N ) < V (P

(k)
N ), find the value λ∗ that minimizes the function

V (P
(k)
N + λ (P̂

(k)
N − P

(k)
N )). Let P (k+1)

N be the configuration code P
(k)
N +

λ∗ (P̂ (k)
N − P

(k)
N ) and set the strategy index SIk+1 = 1. Otherwise, let

i∗ = argmin{V (Q̂
(k)
i ∪ P

(k)
N (I\�(k)

i ))| i ∈ Mk}.
Let P

(k+1)
N be the configuration code Q̂

(k)
i∗ ∪ P

(k)
N (I\�(k)

i∗ ) and set the
strategy index SIk+1 = 2.

Step 7. If V (P
(k+1)
N ) > V (P

(k)
N )− ε, terminate CPA and output the configuration

code P
(k+1)
N together with its potential energy function value; otherwise,

set k← k + 1 and go to step 2.

From the code partition algorithm, we can see that {V (P
(k)
N )} is a strictly monotonic

decreasing sequence as k becomes larger. It is easy to check that −N(N − 1)/2 is
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a lower bound of this potential energy sequence. We give the following conclusion
about the convergence of the code partition algorithm as the error tolerance ε tends
to zero.

THEOREM 4.1. Let CN be the set of all feasible codes with N points for the
Lennard–Jones problem (3). Let V (PN) be the Lennard–Jones potential energy
function defined by (2) on CN . Given a code P

(0)
N ∈ CN with the center of mass at

the origin of the three–dimensional Cartesian coordinate system, let α = V (P
(0)
N )

and the level set

S(V, α) = {PN |PN ∈ CN, V (PN) � α}.
Let {P (k)

N } be the sequence of codes generated by the code partition algorithm. For
each i ∈ I , denote V

(k)
i = minxi∈�3 V ({xi}∪P (k)

N (I\{i})) and x̃
(k)
i to be its globally

optimal solution. If the following conditions hold:
(i) For k = 0, 1, · · · , I (k) = {i |V (k)

i < V (P
(k)
N )} "= ∅ implies that there exists

a natural number s(k) ∈ I (k) such that V (P
(k+1)
N ) � V

(k)

s(k);
(ii) limk→∞ V

(k)

s(k) = limk→∞min{V (k)
i |i ∈ I (k)};

then every cluster point P ∗N of {P (k)
N } is at least a one-point pattern Lennard–Jones

code. In particular, P ∗N satisfies the nonlinear equation (17).
Proof. If {P (k)

N |k = 0, 1, · · · } is a finite set, then CPA terminates at P (K)
N , where

K is the number of iterates. Clearly, P (K)
N is at least a one–point pattern Lennard–

Jones code.
Without loss of generality, suppose that {P (k)

N |k = 0, 1, · · · } is an infinite subset
of S(V, α). Because {V (P

(k)
N )} is a monotonic decreasing sequence and is bounded

below, it has a limit. Let P ∗N be any cluster point of the set {P (k)
N }, that is, there

exists a subsequence {P (km)
N } such that limm→+∞ P

(km)
N = P ∗N . We claim that P ∗N is

at least a one–point pattern Lennard–Jones code.
If P ∗N is not a one–point pattern Lennard–Jones code, then there exists at least a

natural number q such that

V ({x̃∗q } ∪ P ∗N(Iq)) = min
y∈�3

V ({y} ∪ P ∗N(Iq)) < V ({x∗q } ∪ P ∗N(Iq)),

where Iq = I\{q}. We choose the integer p such that

p = argmax{V (x̃∗q ∪ P ∗N(Iq)) |V (x̃∗q ∪ P ∗N(Iq)) < V (P ∗N)}. (21)

Denote {x̃∗p} ∪ P ∗N(Ip) by P̃ ∗N,p and ε = V (P ∗N)− V (P̃ ∗N,p) > 0.
Based on continuity of the potential energy function V (PN) on S(V, α) and

lim
m→+∞P

(km)
N = P ∗N , we get

lim
m→+∞V (P

(km)
N ) = V (P ∗N)



CONDITIONS FOR THE MINIMIZATION OF THE LENNARD-JONES PROBLEM 111

lim
m→+∞V ({x̃∗p} ∪ P

(km)
N (Ip)) = V ({x̃∗p} ∪ P ∗N(Ip)).

For sufficiently large km, the following inequality holds

V ({x̃∗p} ∪ P
(km)
N (Ip)) � V ({x̃∗p} ∪ P ∗N(Ip))+ ε/2

= V (P ∗N)− ε/2

< V (P
(km)
N ).

By definition of V (km)
p and x̃(km)

p , we can conclude that V (km)
p � V ({x̃∗p} ∪

P
(km)
N (Ip)) and p ∈ I (km) for sufficiently large km. Thus, we get I (km) "= ∅. By

the hypothesis (i), we know that, ∃ s(km) ∈ I (km) s.t. V (P
(km+1)
N ) � V

(km)

s(km)
. By the

hypothesis (ii), for the above ε and very large km, V (P
(km+1)
N ) � min{V (km)

i |i ∈
I (km)} + ε/4 � V (km)

p + ε/4 also holds. Therefore, using the monotonicity of the

sequence {V (P
(k)
N )}, we have

V (P ∗N) < V (P
(km+1)
N ) � V ({x̃∗p} ∪ P

(km)
N (Ip))+ ε/4 � V (P ∗N)− ε/4,

which is a contradiction. Hence, P ∗N is at least a one–point pattern Lennard–Jones
code. From the proof of Theorem 3.2, it is easy to check that P ∗N satisfies the
nonlinear Eq. (17). �

The code partition algorithm seems to solve tk smaller size global optimization
problems with respect to every subcode Q

(k)
i (i ∈ Mk) at kth iteration. It is still

difficult even to solve one of these smaller size problems with respect to a single
point. In fact, during the process of searching for an extremal Lennard–Jones code,
structure among atoms is more important than the exactly minimal value of po-
tential energy function with respect to a certain subcode Q

(k)
i . Therefore, in order

to find a one–point pattern Lennard–Jones code or better, we should pay more
attentions to adjust the structure among atoms during the implementation of the
CPA instead of finding a globally minimal solution for every subcode. Since the
separation of any pair of points for the Lennard–Jones problem exists, the effect of
one large change for a certain subcode is expected to be approximated by that of
many small changes for all points or subcodes simultaneously. Hence, an effective
method for adjusting the structure among atoms is to conduct a series of local
optimizations or local searches for these subcodes.

In order to search for one of extremal Lennard–Jones codes, there are three im-
portant aspects: (i) How close is the initial molecular configuration P

(0)
N to a certain

extremal molecular configuration? (ii) How to get a better molecular configuration
from P

(0)
N ? (iii) How to find a better basin-hopping strategy to escape the attraction

of a locally optimal configuration? In fact, the third aspect can be classified as
a special case of the first aspect. In our experiments based on the code partition
algorthim (CPA), we use the following approaches to deal with these aspects:
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Approach 1: Use the hyperspherical coordinate system instead of the Cartesian
coordinate system. That is, the code PN is represented by the hyperspherical co-
ordinates of N points in the three–dimensional space. Since it is observed that an
extremal Lennard–Jones code corresponds to the points located on almost concent-
ric spheres, it is convenient to adjust the position of a point on a certain sphere in
the hyperspherical coordinate system.

Approach 2: The initial molecular configuration code is generated by the fol-
lowing two-step algorithm. At the first step, a configuration code is generated
randomly under the condition of restricting N points to be located in a ball with
the origin as its center and the radius less than 1.75 (For a large N , a larger ra-
dius may be preferred.) At the second step, a locally optimal configuration code is
searched for by using the code partition algorithm with ω12(PN)− ω6(PN) instead
of ω12(PN)− 2ω6(PN) as the objective function.

Approach 3: A special partition in which �(k)
i ≡ {i} is adopted for every iter-

ation of the code partition algorithm with respect to the two different objectives
above. The exploratory code P̂

(k)
N is determined by a series of one step searching

of the steepest descent method with respect to a single point while other points
are fixed according to Strategy 1 or 2. In particular, the movement along the radial
direction during one step searching is adjusted so as not to excess the border of the
ball mentioned in approach 2. Note that this special partition approach is similar
to that used in the point balance algorithm for the spherical code problem [21],
however, the code partition algorithm is not limited to this single point partition.

Approach 4: In order to accelerate the convergence of the code partition al-
gorithm and correct the error in the configuration code caused by the initial con-
strained ball, the Broyden-Fletcher-Goldfarb-Shannon (BFGS) quasi–Newton
method is used to relax the resulting configuration code of the code partition al-
gorithm.

Approach 5: The following perturbation methods are used to adjust the structure
of a locally optimal configuration code. For any of these perturbation methods,
the resulting configuration code can be used as the initial input code, and then,
the corresponding locally optimal configuration code is searched for by using the
code partition algorithm together with the approches 1, 3 and 4. The perturbation
methods which are used randomly include: (i) compressing the outer layer of the
code closer to the origin or/and expanding the inner layer of the code further away
from the origin; (ii) adjusting randomly the positions of points on the outer/inner
layer of the code in their own neighborhoods; (iii) moving the point with the highest
potential energy to the neighborhoods of the points on the outer layer of the code;
(iv) adding randomly m ∈ {1, 2, 3} points in the neighborhoods of the points on the
outer layer of the code, and then, searching for the corresponding locally optimal
code and deleting m points with higher potential energy from the optimal code.

The numerical experiments were conducted using MATLAB 5.3 on a PC with
AMD K6–2/300 CPU processor and 64M memory. The BFGS quasi–Newton ac-
celerating approach can be implemented by calling the subroutine fminu.m in MAT-
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Table 1. Computational results for the symmetric configurations, where
dmin = min

i "=j rij , rmin = min
i

max
j "=i rij , dmax = max

i "=j rij .

Distances Number of points

N −EN dmin rmin dmax on each layer Radius of each layer

2 1.0000000000 1 1 1 2 0.500

3 3.0000000000 1 1 1 3 0.577

4 6.0000000000 1 1 1 4 0.612

5 9.1038524157 0.998 1.002 1.627 3–2 0.578–0.813

6 12.7120622568 0.996 1.408 1.408 6 0.704

7 16.5053841680 0.994 1.023 1.620 2–5 0.511–0.852

13 44.3268014195 0.964 0.964 1.928 1–12 0–0.964

19 72.6597824544 0.922 1.875 2.828 2–5–10–2 0.461–0.861–1.224–1.414

23 92.8444724283 0.932 1.879 2.823 3–2–6–6–6 0.538–0.826–1.083–1.304–1.426

26 108.3156162317 0.941 1.883 2.822 4–4–6–12 0.576–1.011–1.181–1.434

29 123.5873714004 0.939 1.892 3.142 3–2–6–6–6–6 0.550–0.761–1.086–1.299–1.429–1.600

38 173.9284265906 0.978 2.199 3.117 6–8–24 0.691–1.202–1.559

55 279.2484704630 0.936 1.906 3.812 1–12–30–12 0–0.936–1.633–1.906

LAB 5.3. The tolerance for the code PN and its corresponding potential energy
V (PN) is set to 1.0e-5. The number N for the Lennard–Jones problem ranges
from 2 to 56. Tables 1 and 2 contain some computational results for the Lennard–
Jones problem. In order to demonstrate the multilayer structure of an extremal
Lennard–Jones code, the longest distance between each point xi and others, i.e.,
ri = maxj "=i rij , is calculated. The minimal radius rmin of the balls that contain all
points in the code PN and refer to each xi as its center equals to mini ri . Let dmin and
dmax denote the minimal and maximal distances among the points in PN , respect-
ively. Obviously, dmax = maxi ri . For an extremal Lennard–Jones code, without
loss of generality, we refer to the origin of the coordinate system as the center of
mass of the points in the set {xi |ri � rmin + 0.1, i ∈ I } ⊂ PN , denoted by x0. In
our experiments, we have obtained all of putative global minima for the Lennard-
Jones problem when 2 � N � 56, which is similar to the well-known results
reported in the reference [22]. The computational results with higher precision and
its corresponding multilayer structural characteristics are presented in Table 1 and
2.

Table 1 presents some computational results related to the configurations with
a certain symmetry, which include the number of points N , the globally optimal
potential energy EN , rmin, dmin, dmax , the number of points on each layer and the
radius of each layer. The width of each layer is less than 1.0e-5.

Table 2 shows some computational results related to the configurations with less
symmetry, which include the number of points N , the globally optimal potential
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Table 2. Computational results for other less symmetric configurations, where
dmin = min

i "=j rij , rmin = min
i

max
j "=i rij , dmax = max

i "=j rij , R = max
i∈I ‖xi − x0‖.

Distances Radius Number of points

N −EN dmin rmin dmax R on each layer

8 19.8214891922 0.990 1.020 1.971 1.020 1–7

9 24.1133604336 0.984 1.016 1.961 1.016 1–8

10 28.4225318934 0.978 1.008 1.948 1.008 1–9

11 32.7659700900 0.971 0.997 1.962 0.997 1–10

12 37.9675995624 0.963 0.978 1.935 0.978 1–11

14 47.8451567826 0.962 1.560 2.398 1.560 1–12–1

15 52.3226272618 0.961 1.552 2.398 1.552 1–12–2

16 56.8157417804 0.957 1.555 2.402 1.555 1–12–3

17 61.3179946601 0.957 1.554 2.449 1.554 1–12–4

18 66.5309494631 0.938 1.565 2.414 1.565 1–12–5

20 77.1770425683 0.921 1.873 2.824 1.416 2–2–3–6–7

21 81.6845711314 0.922 1.871 2.819 1.440 3–2–6–6–4

22 86.8097822593 0.925 1.872 2.837 1.432 3–2–6–6–5

24 97.3488151180 0.931 1.880 2.853 1.446 4–4–6–10

25 102.3726631996 0.934 1.877 2.839 1.442 4–4–6–11

27 112.8735842737 0.931 1.887 3.188 1.609 3–2–6–6–4–6

28 117.8224017240 0.930 1.887 3.169 1.605 3–2–6–6–5–6

30 128.2865707030 0.928 1.899 3.205 1.673 2–5–10–7–6

31 133.5864219194 0.948 1.907 3.404 1.714 3–2–5–6–6–6–3

32 139.6355237695 0.948 1.908 3.406 1.712 3–2–5–6–6–6–4

33 144.8427188405 0.948 1.907 3.405 1.767 2–5–10–7–6–3

34 150.0445284105 0.949 1.940 3.404 1.940 1–12–17–4

35 155.7566432787 0.946 1.909 3.422 1.763 2–5–10–7–7–4

36 161.8253626623 0.945 1.911 3.414 1.760 2–5–10–7–8–4

37 167.0336724866 0.944 1.943 3.426 1.943 1–12–19–5

39 180.0331852029 0.946 1.917 3.402 1.752 2–5–10–7–10–5

40 185.2498386151 0.945 1.948 3.426 1.948 1–12–21–6

41 190.5362772767 0.944 1.946 3.430 1.946 1–12–22–6

42 196.2775335080 0.940 1.945 3.834 1.945 1–12–22–7

43 202.3646635847 0.937 1.943 3.836 1.943 1–12–23–7

44 207.6887275110 0.937 1.941 3.836 1.941 1–12–24–7

45 213.7848623502 0.938 1.937 3.829 1.937 1–12–25–7

46 220.6803299098 0.937 1.936 3.828 1.936 1–12–25–8

47 226.0122561376 0.936 1.934 3.828 1.934 1–12–26–8

48 232.1995294445 0.935 1.928 3.821 1.928 1–12–27–8

49 239.0918642339 0.934 1.927 3.820 1.927 1–12–27–9

50 244.5499263274 0.934 1.925 3.821 1.925 1–12–28–9

51 251.2539640366 0.936 1.914 3.816 1.914 1–12–30–8
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Table 2. Continued.

Distances Radius Number of points

N −EN dmin rmin dmax R on each layer

52 258.2299910739 0.935 1.913 3.815 1.913 1–12–30–9

53 265.2030161435 0.934 1.911 3.814 1.911 1–12–30–10

54 272.2086309712 0.935 1.909 3.813 1.909 1–12–30–11

56 283.6431052963 0.935 2.306 3.992 2.306 1–12–30–12–1

energy EN , rmin, dmin, dmax, R and the number of points on each layer. R is the
minimal radius of a ball that contains all points in an extremal Lennard–Jones code
and refers to the origin as its center. The corresponding layers are classified under
the following heuristic rules: (i) the multilayer structures should be similar to each
other except that at least one sufficient evidence indicates that there is a difference
between them; (ii) the minimal distance between two different layers is at least
0.05. Because of the more or less un-symmetry in the molecular configuration, the
width of each layer may not be less than 1.0e-5. For most cases, the width of each
layer is less than 0.02.

From Table 1 and Table 2, it is observed that the parameters dmin, rmin, dmax and
R do not change significantly for molecular configurations with similar multilayer
structure. The inner layer structure for an optimal configuration with a large N is
similar to that of a certain optimal configuration with a small N . Although it has
been proved that the minimal distance dmin can not be less that 0.5 [43], it is obvious
from our computational results that the value dmin is not less than 0.9. Actually, the
potential energy function v(r) = r−12 − 2r−6 (r > 0) between two points has a
unique zero point 2−1/6 ≈ 0.8909. We conjecture that dmin should not be less than
the value 2−1/6, i.e.,

For any N � 2, let P ∗N be one of its corresponding extremal Lennard–Jones
codes, the potential energy between any two points in P ∗N is not greater than
zero.

5. Concluding remarks

The Lennard–Jones problem is a challenging and unsolved problem in the area
of molecular conformation and protein folding. Some equivalent formulations and
necessary optimality conditions for this problem are presented in this paper. A new
strategy, the code partition algorithm, which is based on the bilevel optimization
formulation, is proposed for searching for an extremal Lennard–Jones code. Its
convergence is proved and some approaches for its implementation have been
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presented. Some computational results related to the new strategy are reported,
which indicate that a more efficient algorithm for the Lennard–Jones problem
could be constructed by using the equivalent formulations, necessary optimality
conditions and the multilayer structure appearing in any globally optimal molecular
configuration.
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